If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+20a-1=0
a = 1; b = 20; c = -1;
Δ = b2-4ac
Δ = 202-4·1·(-1)
Δ = 404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{404}=\sqrt{4*101}=\sqrt{4}*\sqrt{101}=2\sqrt{101}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{101}}{2*1}=\frac{-20-2\sqrt{101}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{101}}{2*1}=\frac{-20+2\sqrt{101}}{2} $
| (4(4^k-16+3*4^k))/3=(4(4^(k+1)-16))/3 | | 16=4p+4 | | ½(4t-6)=2t | | 1/2(x+5)-1/4(x+1)=12/13 | | 2j−–8=16 | | (3x-2)x=90 | | -4(2p+2)-5(2-7p)=18 | | -9x+4–10+3x=24 | | (3x-2)xx=90 | | 6-3a=2+ | | 2=t/4− 1 | | 2x+5=16+5x | | d-(-12)=-13 | | 7x^2+7x-4=-4+6x | | (11x-47)+6x-2=180 | | (–6+5h)(2)= | | (x−2)=−18 | | 3y+12=84 | | 2x+4=8x+20 | | 70+6x-8=14x-2 | | 7x-60=+60=8x | | 5x+11+2x+83+40-6x=180 | | 5(x+2)/3+x-1/3=1 | | 3x^2-4=-28 | | 1/8|7x+4|=3 | | z/2− 1=1 | | 125+125=6x+3 | | (3+4x)2=4 | | 100+89=x | | (7x-14)=(4x+43) | | 0=-16t^2+115t+3 | | 5(x+2)/3+(x-1)/3=1 |